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This Work @

* Overview of the initial stages of development for a new 4H-SiC solid-state based
magnetometer intended for vectorized planetary magnetic field sensing.

- Leverage a MOSFET as the magnetic field sensing device
- Demonstrated sensitivity of 400 nT /v Hz with

 This study will investigate the magnetic field sensing capability of two nearly identical
devices

- 4H-SiC n*p diodes fabricated by NASA Glenn Research Center
- Differ only in implantation species (Nitrogen vs Phosphorous) and annealing time
- These devices were NOT designed for magnetometry!

* Will also investigate the effect of high energy electron radiation
- Observed a negative built-in-voltage shift in both diodes
- No effect on maximum sensitivity!

ICSCRM - September 20%", 2017 — Washington, DC — Corey J. Cochrane



NASA's Interest in Magnetometers

Magnetic fields in space Magnetometers aid in the search for life

Heliophysics Earth & Planetary Science Europa/Jupiter Enceladus/Saturn

Galileo magnetometer predicted Cassini magnetometer found
planetary-scale ocean under the plumes of water vapor from
surface of Europa. the poles of Enceladus.
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Motivation for New Technology

1. Miniaturization & lower cost
Pioneer 10/11
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2. Extreme
Environments
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SiC Magnetometer (SiCMag)

* Sensor:

Simple n*p 4H-SiC diode

Spin dependent recombination (SDR) due to deep level defects
Leverage the zero-field detection of SDR (hyperfine mixing)
Robust: high temperature and high radiation environments

* |nstrument:

Field nulling design

Inexpensive, simple, small footprint, low power

No high frequency RF or optical components

No dead zones

Simultaneous measurement of 3 axes using a single sensor
Potential to self-calibrate
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Magnetometer Instrument

Cochrane, C. J. et al. Vectorized
magnetometer for space
applications using electrical readout
of atomic scale defects in silicon
carbide. Sci. Rep. 6, 37077, (2016).

6B 200 nT
VAS VHz

3-axis Helmholtz coil for magnetic field
modulation and nulling

4H SiC MOSFET
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Nitrogen vs Phosphorous Implantation

We evaluate the magnetic field sensing capability of two sets of nearly identical n+p diodes fabricated at
NASA Glenn.

The 250 um diameter diodes were formed by the same high-dose n-type implantations used to make
source/drain regions for two different JFET IC wafer runs, contacted by a 162 um diameter IrlS metal stack
[12-14].

The major difference between the two sets of diodes is that one received a nitrogen (N) implant with a 4
hour activation annealing time while the other a phosphorus (P) implant with a ~100 hour activation
annealing time

N-implant -

n-type N doped, p-type Al doped

Gold-Capped
Wire Bond
Metal

4H-SiC p-type epilayer 6pm ~2 x 101 cm-3

4H-SiC p-type epilayer 0.5 pm ~2 x 10*¢ cm

4H-SiC p-type substrate < 3 chm-cm

Gold-Capped Backside Metal Contact

D. J. Spry, et al., Mat. Sci. For. 828 908-912 (2016), D. J. Spry, et al., IEEE Elec. Dev. Lett. 38 1082-1085 (2017)., D. J. Spry, D. Lukco, J. Electron. Mater. 41 915-920 (2012).
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Low-Field EDMR Results
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High-Field EDMR Results

o

High field measurements made at Penn State University

appear to shift with respect to the center dominating line.

Indicate that the dominate defect likely a silicon vacancy, isotropic g ~ 2.0029 +/- 0.0003

Hyperfine interactions are anisotropic and likely due to a different defect in large quantities as they
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Effect of Radiation on Defect Spectrum

o

JPL’s Dynamitron: electron irradiation, fluence of 1x10'4 e/ cm?, E = 2 MeV, both contacts of

the diodes tied to a common ground.
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Effect of Electron Irradiation on Sensitivity
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Applications and Future Work @/

e Applications
— planetary entry probes
— Landers
— missions in extreme environments

— swarms of spacecraft significantly smaller
than current nanosats

Image credit: NASA

e Future Work: Planetary Instrument Concepts for
Advancement of Solar System Observations
(PICASSO)

* Model the observed response

* Trade geometry, size, doping, and processing of
sensor for optimal field detection

e Fabricate customized sensor with NASA Glenn
Research Center
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